
A Multi-Provider Service Function Chain Paradigm
for Flexible Composition
Rui Kang†, Mengfei Zhu∗†, Duling Xu‡, and Tong Li‡

†Kyoto University, Kyoto, Japan ‡ Renmin University of China, Beijing, China
∗China Mobile Group Design Institute Co. Ltd., Beijing, China

Abstract—With the rise of cloud-native applications, service
function chains (SFCs) are increasingly composed of functions
from multiple service providers (SPs) but often require manual
adjustments when replacing or reconfiguring functions from dif-
ferent SPs, limiting flexibility. This paper proposes a blockchain-
based paradigm that supports transparent function switching,
secure multi-provider coordination, and streamlined communi-
cation, simplifying service orchestration across multiple SPs.
Demonstrations validate its effectiveness.

I. INTRODUCTION

A service function chain (SFC) represents a sequence of
functions that process data flows in a predefined order [1].
Traditionally, SFCs focus on network functions like firewalls
and load balancers, operating at the packet level to enforce
routing policies. With the adoption of cloud-native architec-
tures, application-oriented SFCs have emerged, locating in the
application layer rather than network layer. For example, a data
analytics SFC may include ingestion, preprocessing, aggrega-
tion, and machine learning; an IoT SFC may handle sensor
data collection, event detection, and control signaling. Users
assemble these service functions (SFs) from a subscription-
based pool provided by different service providers (SPs).

The shift toward multi-provider SFCs highlights the need
for flexible service composition. However, existing implemen-
tations require manual reconfiguration when switching SFs and
often rely on a north-south interaction model, where functions
send results back to a central source instead of passing data
directly [2], as shown in Fig. 1. This reliance on a central source
necessitates updates to data handling, routing, and formatting
whenever an SF is replaced, increasing interaction points, re-
configuration efforts, and interface adjustments. Consequently,
this back-and-forth communication introduces additional over-
head, latency, and complexity to SF switching.

To address these limitations, we propose a service paradigm
that simplifies user interaction and supports flexible service
composition. The user interacts only once with the entry point
of the chain (SF1), unlike the traditional north-south model
that requires repeated interactions at each step. Subsequent
functions (SF2, SF3, etc.) coordinate autonomously through an
“east-west” communication pattern, as shown in the lower part
of Fig. 1, thereby reducing user interactions.

The figure illustrates a scenario where SF4 replaces SF2.
In a traditional multi-request SFC, this replacement would
require manual modifications to the application (upper part of
Fig. 1). In contrast, our proposed paradigm enables transparent

Figure 1: Impact of SF replacement in traditional multi-
request SFC and proposed one-request service paradigm.

Figure 2: Overall structure.
and flexible service switching without requiring changes to
the application or interface. This enables direct communica-
tion between functions, reducing user overhead, and ensuring
seamless service execution without repeated user intervention.
However, this paradigm shift introduces multiple design and

security challenges. One key challenge is the dynamic discovery
and validation of subsequent components, which requires to
manage interactions and verify the credibility of incoming data
from previous hops. Source authentication is crucial to prevent
tampered data, as compromised inputs could lead to incorrect
billing, unauthorized access, or data leaks. Additionally, accu-
rate resource accounting is necessary to avoid misinterpretation
of requests or overcharging by downstream providers, espe-
cially when multiple concurrent interactions must be tracked
efficiently.

To address these issues, we incorporate blockchain as a de-
centralized, tamper-proof mechanism to support secure, trace-
ability, and east-west traffic steering. By leveraging Hyper-

This work is supported by the National Natural Science Foundation of China (No.62202473, No. 62441230).
Rui Kang and Mengfei Zhu contributed equally. Corresponding author: Tong Li (tong.li@ruc.edu.cn).

(a) Demonstration setup.

Record for SF

processing log

(b) Example of SF processing log stored in blockchain.

(c) Examples of communications through RESTful API.
Figure 3: Settings and results in demonstration.

ledger Fabric, the system records SFC configurations and exe-
cution logs, enabling functions to verify the origin and integrity
of data without relying on a central authority. This distributed
ledger facilitates direct interactions between functions, ensuring
that east-west traffic flows seamlessly along the chain without
unnecessary detours to central sources.

II. SYSTEM DESIGN

A. Overall structure
To realize the proposed service paradigm, we design the

system as shown in Fig. 2. The user decomposes the requested
service into SFs, selects providers from a subscription-based
pool, and assembles them into an SFC. A request to create,
modify, or delete the SFC configuration is submitted to the
blockchain via a smart contract for managing configurations
(1©). The smart contract records configuration changes on the
blockchain to ensure the latest state and track history (2©).

During service execution, middleware at each SF manages
traffic between SFs. The source sends data only to the first SF,
eliminating the need for user interaction with subsequent SFs or
manual error handling. Each SF checks the SFC definition and
latest log to verify the source and determine the next hop (3©). It
then generates logs for usage and errors, which are recorded on
the blockchain via smart contracts (4© 5©) to monitor operations
and support billing (6© 7©).
B. SFC definition

An SFC configuration stores metadata (identifiers and set-
tings) and descriptions of SFs, including their identifiers, set-
tings, network addresses, and ports. The SF logs include the
following information: SF ID, usage and success counts, error
and debugging messages, and hash values with timestamps of
input and output data. For security, authentication credentials
between a specific SP and a user are exchanged using private
and transient data to ensure confidentiality.
C. Middleware

To parse and manage traffic between SFs, middleware is
attached to each SF. Based on the SF definition in the sub-
scription pool, the middleware listens on the corresponding
port by creating a socket or launching a proxy server. When
traffic arrives, the middleware parses the data according to
the interface specifications defined by the SF. It retrieves the
SFC definition to which it belongs and validates the credibility
of the previous hop using the SFC configuration or the hash
value recorded in the latest log. If the previous hop is deemed
untrustworthy, the middleware drops the traffic and logs the

event to the blockchain. Otherwise, the data passes through an
optional decryption module and is then forwarded to the SF.

Once the SF processes the data, the middleware intercepts
the output. The output may pass through an optional encryption
module before being packaged and sent according to the SFC
definition stored in the blockchain, including the interface
format, next-hop SF, and its IP address. Finally, the middleware
records the operation and the hash value of the sent data in the
blockchain.

III. DEMONSTRATION

We design an SFC with five SFs from different SPs to
collect and process temperature and moisture data, as shown
in Fig.3(a). The demonstrated SFC is configured to issue alerts
for heatstroke risks in the next time slot, based on the wet-
bulb globe temperature (WBGT). The SFC configuration is
generated and uploaded to the blockchain. The source, SF1,
retrieves the configuration from the blockchain via a RESTful
API to obtain the necessary settings, as shown in Fig.3(c),
and then sends the temperature and humidity data to the next
hops. Once processing is completed, a log is submitted to the
blockchain through the RESTful API, as shown in Figs. 3(b)
and 3(c). The intermediate SFs, SF2 and SF3, receive the
data, retrieve configurations and logs from the blockchain,
verify authorization information, validate the correctness and
reliability of the data source, process the data, send it to the
next hops, and submit their processing logs. The final SFs, SF4
and SF5, execute their assigned actions according to the settings
in the SFC configuration.

IV. CONCLUSION

We proposed a service paradigm for SFCs that uses an
east-west communication model, where users interact with the
SFC only once. Middleware handles SF communication, error
handling, and logic processing, simplifying development and
enabling seamless switching of functions without modifications.
The demonstration shows that the middleware ensures secure
data flow, source authentication, and accurate resource account-
ing, addressing key design and security challenges.

REFERENCES

[1] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, Oct. 2015. [Online]. Available: https:
//www.rfc-editor.org/info/rfc7665

[2] R. Kang, M. Zhu, and E. Oki, “Implementation of service function chain
deployment with allocation models in kubernetes,” in IEEE Conference on
Computer Communications (INFOCOM), 2022.

